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ABSTRACT 
In this paper we describe a method for near real-time 
identification of attack behavior and local security policy 
violations taking place over SSH. A rational is provided for the 
placement of instrumentation points within SSHD based on the 
analysis of data flow within the OpenSSH application as well as 
our overall architectural design and design principles.  Sample 
attack and performance analysis examples are also provided. 

Categories and Subject Descriptors 
D.4.6 [Security and Protection]: Information Flow Controls – 

General Terms 
Measurement, Security. 

Keywords 
SSH, keystroke logging, Bro IDS, Intrusion Detection, policy 
enforcement.  

1. INTRODUCTION 
The adoption of SSH as the defacto protocol for interactive shell 
access has proven to be extremely successful in terms of avoiding 
shared media credential theft and man in the middle attacks.  At 
the same time it has also created difficulty for attack detection and 
forensic analysis for the computer security community.  The SSH 
protocol and it’s implementations such as OpenSSH [9] provide 
tremendous power and flexibility. Examples of this flexibility 
include authentication and encryption options, shell access, 
remote application execution and X11 and SOCKS forwarding.  
While the benefits gained vastly exceed the difficulties introduced 
by this protocol, the loss of visibility into user activity created 
problems for the security groups tasked with monitoring network 
based logins and activity. 
 
The National Energy Research Scientific Computing Center 
(NERSC) is the primary open science computing facility for the 
Office of Science in the U.S. Department of Energy. It is one of 
the largest facilities in the world devoted to providing 
computational resources and expertise for basic scientific 
research, and has on the average 4000 users across seven primary 
computational platforms.  The significant majority of user 
interaction involves interactive ssh logins.  To address this lack of 
visibility into user activity on our high performance computing 
(HPC) infrastructure, we introduced an instrumentation layer into 
the OpenSSH application and feed the output into a real time 
analyzer based on the Bro IDS.  This instrumentation provides 
application data such as user keystrokes and login details, as well 
as metadata from the SSHD such as session and channel creation 
details.  This data is fed to an analyzer where local site security 
policy is applied to it, allowing decisions to be made regarding 
hostile activity.  The data analyzer is based on the Bro intrusion 
detection system (IDS) [10] which provides a native scripting 
language to handle data structures, tables, timers to express local 
security policy.   In this capacity Bro is being used as a flexible 
data interpreter. A key differentiator between the instrumented 

SSHD (iSSHD) and many other security tools and research 
projects is that iSSHD is not designed to detect and act on single 
anomalous events (like unexpected command sequences), but 
rather to enforce local security policy on data provided by the 
running SSHD instances. 
 
A key idea is that the generation of data is completely decoupled 
from its analysis.  The iSSHD instance generates data and the 
analyzer applies local policy to it.  By using the Broccoli library 
[4], we convert the structured text data output by iSSHD into 
native bro events that are processed by the analyzer system [3]. 
Events, as their name implies, are single actions or decisions made 
by a user that are agnostic from a security analysis perspective. 
 Bro processes these events in the same way as network traffic 
events, applying local security policy to interpret them as desired.   
 
Local security policy can be thought of as sets of heuristics that 
describe (in this context) what behaviors are considered 
unacceptable or suspect.  This behavior might be a command like 
“mkdir …”, application usage like remotely executing a login 
shell, or tunneling traffic to avoid blocked ports.  iSSHD was 
designed so that the installed SSHD instance would not need to be 
modified with every new threat.  Instead, changes are made on the 
analysis/policy side as new problems are identified.  This not only 
simplifies administration, but also allows experiments to be run on 
previous logs without significant work. 
 
While NERSC has no explicit legal or privacy issues with 
intercepting communications on local systems, we recognize the 
importance of an informed user and staff population.  To help 
address this we chose a policy of complete transparency.  Each 
major group at NERSC was allowed representation in the design 
process and code review.  As well, the entire user community was 
alerted to the changes by making announcements at User Group 
meetings and email notices.  The complete source code is 
available to anyone interested and can be secured through the 
LBNL Technology Transfer Office. 
 
The iSSHD project has been used in production capacity at 
NERSC for nearly three years on approximately 350 hosts.  There 
are around 4000 user accounts with a daily average of 52,000 
logins per day on the collective set of multi-user systems.  In 
addition to the obvious security functionality, there are a number 
of other non-security purposes like debugging user problems or 
job analysis where having access to historical keystroke data has 
been quite beneficial in tracking down systems problems. 
 
The reminder of the paper is structured as follows.  In related 
work similar coding projects and tools are presented.  Next the 
execution flow within an unmodified OpenSSH 5.8p1 instance is 
mapped out.  This flow provides a way to determine the most 
effective points for instrumentation.  In section four, the overall 
architecture and design goals are detailed including the integration 
of Bro into the process.  Section five provides implementation 



details describing the inherent tradeoffs between complete 
monitoring and resource limitations.  Section six has examples of 
attacks and some rudimentary analysis.  Finally future work and 
references are provided.   

2. RELATED WORK 
Related work can be generalized into several groups.  These are 
research projects relating to SSH data access, hacker activities, 
and more generalized detection of SSH credential theft detection 
in the HPC environment. 
 
The work most similar to our own involves the hacker 
community’s use of backdoored SSHD instances to steal 
authentication credentials.  In principle there is little difference 
between this behavior and the functionality provided by the 
iSSHD except in terms of the breadth of data provided.  Statically 
backdoored OpenSSH code has been around since at least 1999 
[14], and more recent versions are trivial to locate - see [15] for 
example.   
 
Besides directly replacing the existing SSHD binary, there are at 
least three additional ways to access session data. The first is via 
direct access to a user’s terminal devices by a privileged user. 
This can be achieved by one of dozens of small applications or as 
part of a larger kernel rootkit [18].  A more subtle approach is to 
interfere with kernel level behavior, thereby preventing a user 
space analysis of the terminals from giving away the access. 
Typically rather than just looking at terminal IO, input and output 
system calls are intercepted via a hidden kernel module. This 
information is transmitted to an analysis tool or recorded.  There 
are innumerable examples of this approach within the rootkit 
community [11] as well as Honeypot implementations such as 
Sebek [13].  Finally you can interact with the running SSHD 
process by injecting code into it [16] or using process debugging 
to “jump” from their stolen user account to a potentially 
privileged session on another machine [17] [1].  These last two 
cases are somewhat subtle in that no changes to the actual static 
(non-running) binary are made. 
 
There is a general class of SSH related security work focusing on 
user account theft via anomaly detection, both in terms of 
command sets as well as process accounting data.  These include 
Yurcik [21] [22] and Joohan Lee et al. [5] who look for account 
compromises within the HPC domain via accounting and 
command analysis.  Historically, there is a rich collection of 
research relating to account masquerading, with a nice write-up by 
Malek et al. [6].  This last class of ideas can be fed by or used 
with the iSSHD and incorporated into the sites overall intrusion 
detection design since they are orthogonal to the actual iSSHD. 
 

3. SSH Application and Protocol 
In order to identify the best places to place instrumentation within 
the SSH application, it is necessary to understand the code path 
taken by typical behavior as well as subtleties within the protocol.  

From a historical perspective there are two individual (and 
incompatible) versions of the SSH protocol available.  Tatu 
Ylönen created version 1 in 1995 as a replacement for the then 
ubiquitous telnet and rlogin protocols.  OpenSSH emerged with 
the OpenBSD group taking up development after a number of 
organizational changes including the splitting of the Ylönen code 
base at one of it’s last open source implementations.  The SecSH 

IETF working group developed version 2 originally published in 
1998 and in 2006 a revised version of the protocol was adopted as 
a standard in RFC 4250 (Protocol Assigned Numbers) [23], 4251 
(Protocol Architecture) [24], 4252 (Authentication Protocol) [25], 
4253 (Transport Layer Protocol) [26], 4254 (Connection Protocol) 
[27]. 
 
In terms of this analysis, all paths and descriptions assume the use 
of version 2 protocol since version 1 has suffered a number of 
pathological security defects [19] which reduce it’s use to older 
and unusual cases.  In the case of the actual code instrumentation, 
this assumption is not made and both version 1 and 2 provide 
nearly identical logging.  Section 3.1 represents a general 
overview and relationship between RFC and OpenSSH structure.  
Section 3.2 takes this high level design and fleshes it out, 
providing a code path and rational for instrumentation locations. 
 

3.1 SSH Application and Protocol Layering 
 For this initial description we avoid taking into consideration a 
number of details in order to focus on the overall flow of 
information and data.  For a generic shell interaction a simplified 
diagram of the data flow might look something like Figure 1. 

 
Figure 1: Application vs. Protocol design for typical SSHD session 

Here Figure 1 is broken out into two columns – on the left there is 
the protocol layering as defined in RFC 4250-4254. The right side 
describes the application implementation of those layers.  It is 
worth noting that the layers do not map 1 to 1 - in particular the 
role of the session object within the application, which according 
to RFC 4253 should be rolled into the transport layer.    Here each 
application layer is a functional layer within the application, with 
the parent SSHD is represented as the top block. After a 
successful network connection is made, the process forks, and an 
authentication context A is created.  This context is used for the 
lifetime of the login and is used to track a number of 
authentication based data values.   
 
During the next step Key Exchange occurs, where the actual 
negotiation for a cipher, MAC and compression take place.  First 
server authentication takes place via server/host key pairs.  This 
authentication is transparent to the user if they have visited that 
SSHD server in the past.  Assuming the server authentication is 
successful, algorithm negotiation for cipher and MAC takes place.  
Finally the short-lived session key is generated which is used to 
provide symmetric encryption for the data stream. This key is 
periodically re-negotiated after a given time or data volume 
passes.  Since this is a reasonably well studied and logged area of 



 
 

Figure 2: Internal SSHD Data Flow 
 
the application, none of the exchange is recorded in the iSSHD 
besides what the system logs already do.  If a strong reason to log 
the session crypto data could be come up with, there is no reason 
why it could not be done. 
 
The Authentication Layer (unsurprisingly) provides the actual 
user authentication process.  This process is extremely flexible 
with a number of options natively defined by the application as 
well as any generic PAM infrastructure.  During the 
authentication process more than one type of authentication type 
can be examined so multiple fail and postpone events can be 
generated even for a successful login.  Since we are less interested 
in the details of the authentication process than the outcome, there 
is little or no detailed logging from iSSHD except for the 
success/failure declaration as well as the authentication type being 
used. We apply the same rational to the key exchange process 
since in both cases relevant data can be preserved in regular 
system logs. 
 
If the authentication process proves successful, a Session Object is 
created.  This will be the primary container for not only the 
authentication context, but tty, X11 and channel data as well.  The 
Session layer code also controls the mechanics of user login such 
as the login process, remote command execution, pty allocation 
and X11 forwarding.  
 
The session object can create, use and destroy Channels.  A 
channel can be thought of as a connection within the Session 
Object that has well defined semantics for data movement, 
windowing information, file descriptors and multiplexing 
capacity.  Typically for a shell, you would allocate a single 
channel that holds the file descriptors for stdin, stdout and stderr. 
 It is not unusual though to have many additional channels in use 
for X-windows, SOCKS forwarding and authentication agents. 
 Data within a channel is not encrypted since it is contained within 
a session which already is. This is a critical point for monitoring 
which we will use to our advantage.  
 

3.2 Common Code Paths During Execution 
Now that the behavior of OpenSSH for a typical login has been 
described, we can more closely examine code paths for strategic 
places to insert instrumentation.  Identifying those paths involved 
reading the source code as well as experimenting with sessions 
running in debug mode.  Since the most common service for SSH 
to provide is remote shell login access, it was the initial target for 

both analysis and instrumentation.  The execution path for this is 
identical to that shown in Figure 1, except for some additional 
details found in the session section.  A location is considered a 
good candidate for auditing if (1) there exists a decision making 
branch where most or all connections traverse or (2) a final state is 
arrived at which contains security relevant information. 
 
Figure 2 provides a more detailed set of code paths for nearly any 
use of OpenSSH.  Here every box represents a transition between 
user privilege or application function and ultimately represents an 
event sent to the iSSHD analyzer.  The creation of the Session 
Object (SO) begins on the left side and the path moves to the right 
till the users objective is reached.  In it, a number of common 
paths that immediately stand out.  The horizontal split between 
session and tunnel driven services is an obvious candidate for 
instrumentation.  As a reminder, the session code tends to be more 
execution oriented – i.e. involved with the invocation of services, 
commands and shells.  Since it is not unusual for an attacker to 
use a known tool or service in a way which is unusual, how we 
instrument the path is extremely important.  Decision branches 
such as “session-in-channel-open” provide the path of what was 
asked for, and logging details at the end of the code path provide 
information regarding what was actually done.  In any case, policy 
can be written to provide notice if the local site finds any part of 
the execution path objectionable. 
 
Using the same rational, the lower half of Figure 2 provides the 
same opportunity to audit this behavior in some detail for 
tunneling and port forwarding activity. While not implemented in 
this design, it should be at least possible (though perhaps not 
practical) to access the forwarded data instead of just identifying 
the static forwarding requests. 
 

The level of logging may seem excessive, but such detail can 
prove to be quite powerful for forensic analysis when combined 
with local site policy.  Local site policy - described later in some 
detail - can act on specific session events like tunneling which 
may not be allowed by a centers usage policy.  There is a huge 
benefit to be had in identifying the exact execution path of an 
attacker.  Since it is not unusual for a tool like ssh to be used in a 
way which was not foreseen by the security community we tend 
to error on the side of caution. 



4. SYSTEM ARCHITECTURE 
For the iSSHD architecture, we selected three principles 
fundamental to the design and implementation process.  If at any 
time one of these principles was in contradiction with the design, 
something was wrong with the architecture.  The principles are: 
 

1. Avoid introducing stability or security problems: We 
need to demonstrate with high confidence that our 
modified version of SSH is just as stable and secure as 
the original code base. 

2. Unchanged user experience: The modified version of 
SSH can not affect the way users interact with NERSC 
systems, require a special version of the SSH client or 
application, nor remove any existing capabilities. 

3. Minimal impact on system resources: System 
resources including CPU time, memory, and network 
bandwidth are at a premium. Additional demands made 
by the instrumented SSH must be insignificant 
compared to an unmodified SSH instance. 

 
Based on these requirements, the following choices were made in 
the architecture and development plan: 
 

1. Use OpenSSH as the code base.  OpenSSH has an 
exceptionally good reputation and is already used on the 
multi-user production systems.  In addition, we were 
able to add on the Pittsburgh Supercomputing Center’s 
high performance OpenSSH patch set [12].  This 
provides significant gains in terms of bulk data transfer 
performance. 

2. Minimizing changes to the code base.  As part of the 
project we made an active attempt to minimize the 
number of changes to the original code.  In addition, we 
chose to use other tools and capabilities rather than 
write them ourselves.  An example of this would be the 
use of stunnel [20] rather than attempting to write an 
add on to ssh for our own data encryption. 

3. Decoupled Analysis: Taking our experience from the 
Bro IDS, we chose to fully decouple the analysis from 
the generation of the ssh instrumentation data.  To do 
this it was necessary to remove any dependencies 
between the running iSSHD and the back end analysis. 
This is done by making all writes to the back end non-
blocking stressing that a failure of the analysis 
infrastructure should result in the loss of security data 
before an interrupted user experience. 

 
The overall design of the iSSHD can be broken out into two 
sections – the event generation within the running iSSHD process, 
and the logging and analysis that compares those events against 
local policy.  Much of §3 was involved with the thought process 
that took place before the coding started.  With that in mind, we 
turn to the actual design and implementation of the system itself. 
 
It should be noted that the core of the analysis side currently exists 
as a log repository with scripts feeding live data to the Bro IDS. 
The use of Bro is not technically required since the file exists as 
structured text, which provides the ability to feed the information 
to any another tool.  We will assume for the remainder of the 
paper that Bro will be used. 

4.1 Server Side 
The iSSHD server is modified OpenSSH code that provides 
events for further logging and analysis.  Within the SSHD 
application (as described in §3.2) there are ideal locations where 
we extract information about user activity.  Such information 
includes login and authentication data, session and channel 
creation, port forwarding, and keystroke/application data. This 
data is normalized in terms of data types as well as being formed 
into structured text.  This text is then written to a local socket 
(provided by stunnel) using a non-blocking descriptor.  Details of 
this process follow. 
 
For events, a number of data types are defined.  Not unexpectedly 
these types map approximately with the native data types defined 
by Bro.  This includes the usual integer, string and count as well 
as more network specific types like address and subnet.  In order 
to encapsulate arbitrary data, both unstructured string and binary 
data is URL encoded using the stringcoders library [8].  This 
mechanism is used in reproducing user activity since even simple 
terminal sessions include Unicode characters and colors.  An 
additional benefit of URL encoding is to safely encapsulate traffic 
that might be directed toward either the analysis system or the 
terminal session of the individual doing the analysis.  Original 
versions of the instrumentation attempted to remove non-printing 
characters from the recorded data, but information loss and textual 
confusion ultimately pointed toward the URL encoding solution 
as a better option. 
 
As has been already described, the most basic unit of information 
provided by iSSHD is called an event.  Events, as their name 
implies, are single actions or decisions made by a user that are 
agnostic from a security analysis perspective.  Lines typed by the 
user as well as logins and channel creations are all examples of 
events.   
 
For event creation, all activity points to a single function.  This 
reduces confusion and creates a single point for information 
gathering.  A sample function call looks something like: 
 

s_audit("channel_new", "count=%d count=%i  
         uristring=%s", found, type, t1buf); 

 
The function s_audit is the general event handling operation 
within iSSHD.  There are three sets of arguments that it takes – 
the first is just the event name (in this case “channel_new”).  The 
second defines data typing for the Broccoli interpreter and has 
printf() type structure.  Any additional arguments define the data 
associated with the event type.  Here, ‘found’ is the index for the 
free channel slot, ‘type’ defines the type/state of the channel (ie:  
SSH_CHANNEL_LARVAL, SSH_CHANNEL_AUTH_SOCKET), and 
‘t1buf’ is the URL encoded channel name such as server-session 
or auth socket.  After passing through the Broccoli interpreter, an 
event named “channel_new” will be created with three arguments.  
Note that there is no indication that the channel creation is 
considered a good or bad thing – such a determination will be left 
to the analysis side of the iSSHD. 
 
 



 
Figure 3: Overall iSSHD Architecture 

 

Data provided by keystroke logging presents an interesting 
problem in that the content can be of arbitrary length, and will 
contain non-printing ASCII characters.  To avoid inefficiencies, 
we cache keystroke data in a channel buffer queue using the 
native channel buffer types until a new line character is seen or 
data volume is exceeds a threshold.  In situations where too much 
data is generated on the server side (such as large compile runs), 
the value of this additional data is almost zero.  To address this, 
we adopted the same idea as used in the network Time Machine 
[7]: specifically that most security sensitive data and events tend 
to cluster them selves to the beginning of interactive sessions.  By 
making the distinction between interactive sessions (where there 
are roughly the same order of magnitude of client initiated data 
events as server) and highly asymmetric connections (with dozens 
or hundreds of server data events per client data event), we can 
avoid excess resource consumption by the iSSHD.  This is one 
situation where it was necessary to build logic into the code 
running in the iSSHD. Table 1 provides cutoff values for both 
normal tty channels as well as channels not bound to a tty. For the 
situation of non-tty communications, the ratio of printing to non-
printing characters is also looked at to avoid needlessly copying 
binary files. 

Table 1: Default cutoff values for user and server data. 

TTY Details Default Value 

Yes Max line length or line count for client 
input between server inputs. 

15 lines, 64k 
bytes 

Yes Max line length or line count for server 
input between client inputs. 

15 lines, 64k 
bytes 

No Initial sample value (ISV) before 
determining binary data. 

1024 bytes 

No Maximum data in total for either client 
or server inputs. 

.5M bytes 

No Percentage of non ascii-printing 
characters, after ISV, allowed for 
continued sampling. 

30% 

 

For example if a user (client side) types ‘ls -l’ in a normal tty 
based login, the iSSHD would provide the server echo of ‘ls -l’ as 
well as the next 14 lines or 64k bytes of server side output 
(whichever is exceeded first).  The line/byte count is reset every 
time client data is processed.  The cutoff values are modifiable at 
compile time and are set somewhat conservatively since the 
assumption is that there is a large number of iSSHDs feeding into 
a single analysis system. 

 

4.2 Data Analysis 
Data analysis consists of any component except for the iSSHD 
itself.  Practically it can be thought of as the stunnel as well as the 
bro instance and related policy.  
 
The stunnel is not particularly interesting in that we are using it to 
transport data from an open file descriptor on the iSSHD side, to 
the analyzer host.  Since this is just a simple implementation of a 
well-known application, we will focus on the details provided by 
the policy. 
 
The bro policy is designed to track individual sessions and 
whatever activity is contained within them - normal shell sessions, 
remote code execution or subsystem invocation. Each session is 
defined by the start of the ssh connection and continues through 
any activity until that connection ends.  The series of events for a 
routine login looks something like Figure 4 when printed directly 
from the iSSHD. 
 
Each of these lines represents an event and the data associated 
with it. Policy can be written to trigger on specific events, their 
data, or both.  Of obvious interest is a users keystroke data and the 
systems response.  Since we have direct access to near real time 
keystroke information, we look for extremely unlikely - and 
highly suspicious - character sequences.  These might include 
known toolkit signatures, abnormal root shell prompts for /bin/sh, 
or any other unexpected commands.  Sets of commands that 
individually do not represent a significant interest, but which are 
suspicious in total represent the second type of alarm.  These two 
categories are defined by two sets of signatures – the first for 
commands or strings worthy of immediate notification, and the 
second for sets of these commands or strings present in the user 
session.   
 
In order to circumvent logging from the system login() facility, it 
is not unusual for attackers to remotely execute a shell via ‘ssh 
host sh -i’ .  This style of reconnaissance has become so common 
during hostile activity that we made sure that it could be simply 
alarmed and all interactive data recorded. To address this, traffic 
on non-tty channels had to be tracked and analyzed since the tty 
invocation is part of the standard unix login() facility.  Since data 
on these channels can include binary streams, the ratio of ASCII 
to non-ASCII packets is monitored.  If after a pre-defined 
sampling window this ratio exceeds a threshold, further 
monitoring on that channel is dropped.  We have experienced 
tremendous success in logging both the remote execution of shell 
binaries as well as monitoring commands to and from such 
occurrences. 
 
 



SSHD_CONNECTION_START 
 
AUTH_KEY_FINGERPRINT uristring=0x.. uristring=DSA 
AUTH_INFO uristring=Accepted uristring=scottc 
uristring=publickey 
 
SESSION_NEW uristring=SSH2 
CHANNEL_NEW  count=0 count=SSH_CHANNEL_LARVAL 
uristring=server-session 
SERVER_INPUT_CHANNEL_OPEN uristring=session 
CHANNEL_NEW count=1 count=SSH_CHANNEL_AUTH_SOCKET 
          uristring=auth+socket 
SESSION_INPUT_CHANNEL_REQ count=0  
              uristring=auth-agent-req@openssh.com 
SESSION_INPUT_CHANNEL_REQ count=0 uristring=pty-req 
SESSION_INPUT_CHANNEL_REQ count=0 uristring=shell 
 
CHANNEL_DATA_SERVER count=0  
 uristring=%0ALast+login:+Sat+Jan++8+14:45:31+2011 
CHANNEL_DATA_CLIENT count=0 uristring=exit 
CHANNEL_DATA_SERVER count=0 uristring=exit 
CHANNEL_DATA_SERVER count=0 uristring=%0Alogout 
 
SESSION_EXIT count=0 count=28221 count=0 
CHANNEL_FREE count=0 uristring=server-session 
CHANNEL_FREE count=1 uristring=auth+socket 
 
SSHD_CONNECTION_END 

Figure 4: Event series for a shell login. 

The final area to explicitly mention is the ability of iSSHD to 
intercept authentication data.  When considering our options for 
recording passwords during authentication, we ended up having to 
carefully balance the utility and risk of retaining the data.  In the 
context of a forensic analysis, a password might be tremendously 
valuable if used in a legally sanctioned criminal investigation. On 
the other hand having such valuable credential information in the 
logs represents a huge risk in and of itself, even without taking 
into consideration passwords recorded for other institutions by 
users transiting local systems.  Ultimately the decision to record 
passwords is left to the local site as a configure time option so that 
it cannot be adjusted without recompiling the iSSHD.  Since it is 
not unusual for sites to share lists of known compromised keys via 
their fingerprints, public keys presented for authentication can be 
compared to a list of known bad keys and alarms raised when a 
suspicious key is seen.  
 

4.3 Event Details 
As previously suggested, events generated by the iSSHD are 
without any sort of predefined notions of good or bad since it is 
the role of the analyzer to interpret these events.  These events can 
be roughly grouped by function, with types auth, channel, session, 
server and sshd.  In addition to these, the sftp subsystem also has a 
number of events associated with it. 
 
The example presented in Figure 4 shows the series of events seen 
in a “normal” login.  Two of the most important in terms of 
monitoring and analysis are CHANNEL_DATA_CLIENT and 
CHANNEL_DATA_SERVER.  These events provide unfiltered client 
keystroke and server echo/response data.  If a user types 
“lz<backspace>s<enter>” you would see “lz%7Fs” from the client 
side and “lz%08+%08s” from the server side in the URI encoded 
data.  The characters ‘%7F’ and ‘%08’ are the control characters 
delete and backspace respectively which can be seen from 
standard ascii definitions.  Since we assume all user-generated 
data is potentially hostile, we reduce the possibility of accidentally 

interpreting control characters in the process of reading and 
interpreting the data by storing it in an encoded form.  
 
Each event also includes timestamp, server id (process ID + server 
hostname + listening port), client id (32 bit random number) and 
interface address list.  This information is tracked by the analyzer 
bro policy as a locally unique session identifier - for example 
#12345.  This session id will remain constant for any activity 
attached to that users session. This event data is missing from 
figure 4 (and the other session figures) to allow for better clarity.  
Additionally, data is maintained for the channel id so session #12 
might contain channel 0 and channel 1.  Since the session object 
holds channel objects, the session id (ex #12) is the same and the 
channel identifier will be different.  A small number of events, 
mostly connected to the running sshd daemon itself, do not have 
all these fields since there is no notion of client session to be had 
when the daemon is starting or emitting a heartbeat event. 
 

5. RESULTS AND PERFORMANCE DATA 
Presenting quantifiable results for the iSSHD is somewhat 
complicated since there is no control data to base comparisons 
against.  Since the number of incidents is not large, checked 
against a control group or varied across sites, it presents more of 
an anecdotal story than an effective hypothesis test.  Using iSSHD 
we have identified approximately three-dozen instances of stolen 
credentials.  Most of them are not particularly interesting, but at 
the same time we can catch this class of attacker before anything 
can get interesting.  Because of this, we will present an unusually 
qualitative analysis for the security and policy enforcement 
capabilities.  For performance data we will look at a number of 
measurements comparing iSSHD to an unmodified version 
running on the same hardware.  In addition we will also provide a 
simple analysis of aggregate user events that would be extremely 
difficult (or impossible) without the data set.    
 
Besides detection, the iSSHD provides considerable insight into 
the tactics, skill levels and motivations for many of the attackers 
on our systems.  In many cases the forensic logs quickly provide a 
clear indication of the success, skill level and threat presented by 
an intruder.    

5.1 Sample 1: Remote Shell Invocation 
Figure 5 provides a textbook example of a “classic” stolen 
credential and local exploit attack.  This user (resu) made the 
mistake of having the same password for at least two sites - 
NERSC and the remote site that was compromised.  Here the 
attacker remotely executes a shell to log in, then attempts a local 
linux exploit.  Note that because of the shell invocation, 
communications are not via the normal tty interface - a technique 
detailed in §4.2 . 

Details follow with some of the data fields removed for clarity. 

1 
 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

AUTH_OK resu keyboard-interactive/pam 
1.1.1.1:52073/tcp > 0.0.0.0:22/tcp 
NEW_SESSION SSH2 
NEW_CHANNEL_SESSION exec 
SESSION_REMOTE_DO_EXEC sh -i 
SESSION_REMOTE_EXEC_NO_PTY sh -i 
NOTTY_DATA_CLIENT uname -a 
NOTTY_DATA_SERVER Linux comp05 2.6.18-…GNU/Linux 
NOTTY_DATA_CLIENT unset HISTFILE 
NOTTY_DATA_CLIENT cd /dev/shm 
NOTTY_DATA_CLIENT mkdir ... 
NOTTY_DATA_CLIENT cd ... 



12 
 

13 
14 
15 
  

16 
17 
 

18 
 

19 
 

20 
 

21 
 

22 
23 
24 

NOTTY_DATA_CLIENT wget 
              http://host.example.com:23/ab.c 
NOTTY_DATA_CLIENT gcc ab.c -o ab -m32 
NOTTY_DATA_CLIENT ./ab 
NOTTY_DATA_SERVER [32mAc1dB1tCh3z [0mVS Linux 
                 kernel 2.6 kernel 0d4y 
NOTTY_DATA_SERVER $$$ Kallsyms +r 
NOTTY_DATA_SERVER $$$ K3rn3l r3l3as3:  
                 2.6.18-194.11.3.el5n-perf 
NOTTY_DATA_SERVER ??? Trying the 
                 F0PPPPppppp__m3th34d 
NOTTY_DATA_SERVER $$$ L00k1ng f0r kn0wn  
                   t4rg3tz.. 
NOTTY_DATA_SERVER $$$ c0mput3r 1z aqu1r1ng n3w 
                   t4rg3t... 
NOTTY_DATA_SERVER !!! u4bl3 t0 f1nd t4rg3t!?  
                   W3'll s33 ab0ut th4t! 
NOTTY_DATA_CLIENT rm -rf ab ab.c 
NOTTY_DATA_CLIENT kill -9 $$ 
SSH_CONNECTION_END 1.1.1.1:52073/tcp >  
                0.0.0.0:22/tcp 

Figure 5: Remote shell invocation example. 

We can see a number of clear indicators that something is going 
on which is not normal user activity.  First is the interactive 
session on a non-tty channel created by remotely executing a shell 
(line 3-5).  Second, the unset HISTFILE command and the 
creation of a directory called “...” under /dev/shm (line 8-10). 
Finally the exploit is downloaded, compiled and (unsuccessfully) 
run (line 12-21).  Highlighted text represents commands and 
output that as part of the default policy distribution are considered 
sufficiently unusual or dangerous to warrant alarming on. 

5.2 Sample 2: Cluster Reconnaissance 
This example is one of the more complex and educational that we 
have captured, providing a clear snapshot of the methodology and 
tactics taken by a pair of hackers looking into our systems.  Since 
they are sharing a common login via the GNU screen utility we 
can see the interaction between them and get an understanding of 
their methods and communication, something quite difficult under 
normal conditions.  While there are several thousand lines of 
interaction from the event, space limitations force us to only 
include a small chunk of the most interesting (and amusing) lines.  

1 
2 
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4 
5 
6 
7 
8 
9 
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12 
13 
 
14 

DATA_CLIENT /sbin/arp -a 
DATA_SERVER b@n:~> /sbin/arp -a 
DATA_SERVER comp05 (192.168.49.94) at 
00:00:30:FB:00:00 [ether] PERM on ss 
DATA_SERVER b@n:~> 
DATA_CLIENT oh wow 
DATA_SERVER b@n:~> oh wow 
DATA_SERVER b@n:~> /sbin/arp -an |wc -l 
DATA_SERVER 9787 
DATA_CLIENT rofl hax it hacker 
DATA_SERVER b@n:/u0> sorry, im gonna s roll 
           a cigarette and smoke it, y 
DATA_SERVER b@n:/u0> then im gonna come back 
           and try to hack ok ? 
DATA_SERVER b@n:/u0> i am gonna go for one 
DATA_SERVER b@n:/u0> you cant smoke inside?  
           terrible  
DATA_SERVER b@n:/u0> its f cold as f***  

Figure 6a: Initial communication and Note: removal additional 
server fields, time and session id 

 

The text from the screen session is marked in blue, and event 
names are once again bolded.   The overall behavior can be 
broken out into several sections.  In Figure 6a, lines 1-10, arp 
tables are used to identify locally attached systems.  In this case 

the large number of them (9787) seems to cause the need for a 
few moments thinking about how to proceed.  This is one of the 
initial indicators that the attackers are not just blindly running 
tools.  It also indicates that they are probably in the western 
hemisphere.  
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DATA_CLIENT hmm cd .. ;ssh-keygen -t 
DATA_SERVER b@n:~/.ssh> hmm 
DATA_SERVER b@n:~/.ssh> cd .. 
DATA_SERVER b@n:~/.ssh> ssh-keygen -t dsa 
DATA_SERVER Gen pub/private dsa key pair. 
... 
DATA_CLIENT ls 
DATA_SERVER b@n:~/.ssh> ls 
DATA_SERVER id_dsa id_dsa.pub known_hosts 
DATA_CLIENT cat id_dsa.pub > authorized_keys 
DATA_SERVER b@n:~/.ssh> cat id_dsa.pub >  
            authorized_keys 
DATA_CLIENT ssh -oHashKnownHosts=yes  
            192.168.0.1 
DATA_SERVER b@n:~/.ssh> ssh  
           -oHashKnownHosts=yes 192.168.0.1 
DATA_CLIENT cat > ssh_cn010onf 
DATA_SERVER b@n:~/.ssh> cat > ssh_config 
DATA_CLIENT cat known_hosts | grep -v  
           192.168.0.1 
DATA_SERVER b@n:~/.ssh> cat known_hosts | 
           grep -v 192.168.0.1 > tmp 
... 
DATA_SERVER b@n:/tmp> what are you trying to 
do get ride of t pressing yes? 
DATA_SERVER b@n:/tmp> clearly 
DATA_SERVER b@n:/tmp> lol set known_hosts to 
dev null n00b 
DATA_SERVER b@n:/tmp> that is such a hack 
and completely improper 
DATA_SERVER b@n:/tmp> and a good way to lose 
a box if you forget to remove it 
DATA_SERVER b@n:/tmp> nononosec phrack.org 
done? wn? its in issue 64 
  

Figure 6b: Generate local key pair and populate across NFS 
share, attempt generic NFS type attacks via suid 0 program. 

 

1 
2 
3 

DATA_CLIENT ps axuw |grep snort 
DATA_SERVER ps axuw |grep snort 
DATA_SERVER b 36684 0.0 0.0 2740 564 pts/10 
S+ 20:39 0:00 grep snort 

 
Figure 6c: Looking for IDS processes. 

 

By Figure 6b discussion has indicated a familiarity with insecure 
multi-host NFS file systems - interestingly, they did not attempt to 
use NFSShell. From here (lines 4-5) the pair generate a pass-
phraseless ssh key to use across the systems sharing the home file 
system, once again indicating a familiarity with shared file 
systems and how they can be used.  They grapple a bit with 
configuration issues and interestingly use the HashKnownHosts 
option to obscure records left in the known_hosts file.  Figure 6c 
provides an example of IDS detection. 
 
Ultimately this pair logged in to 19 local systems and never 
managed to get root access.  The dialog here is as long as it is in 
order to convey the relative sophistication and interesting method 
of the attackers. 

 



5.3 Performance Data 
There are numerous points of reference in comparing the 
performance of the iSSHD with an unmodified OpenSSH.  In this 
case we will be looking at aggregate remote command execution 
time, time to copy binary and ascii files, cpu usage for general 
activity, and memory usage for the child process.   

This command set is run remotely via remote execution with the 
system time command providing information about total 
execution time, system and user cpu usage.  We recognize the 
differences between remotely executing a script containing 
commands and manually running them.  Ultimately we chose to 
run via the script for repeatability and ease of use since tools such 
as Expect do not provide additional functionality. 

 Remote Exec SCP Binary SCP ASCII 

SSHD 42.78 [0.05] 9.85 [0.11] 0.70 [0.01] 

iSSHD 43.03 [0.18] 9.85 [0.15] 0.69 [0.02] 

Table 2: Run time values for three tests, values in seconds, standard 
deviation in brackets.  Average remote command execution time 
increases by 0.6%. 

For Table 2 column 1, “Remote Exec” is a set of 13 remotely 
executed commands including normal user activity like ls, touch 
configure and make.  From a simple ratio test, the iSSHD takes in 
total about 0.25 seconds more to run or about 0.6%.  This 
indicates that the average behavior of interactive shell commands 
should not be adversely affected, but limited variations in 
keystroke responsiveness could be lost.  Given the way that large 
volume logging is done (as described in §4.1), this is not at all 
surprising.  For the additional columns in Table 2, we have the 
time to completion values for using scp to transfer a medium size 
ASCII file as well as a medium size binary file.  In this case, 
medium size is on the order of 100MB.  In each case the 
additional overhead caused by the memory copy and transmit did 
not provide a significant (or measurable) difference in the 
measured time.  In this measurement, the same file was moved 
from one directory on the local system to another 40 times in a 
row.  The task was then repeated with the iSSHD to reduce the 
influence of variable overhead and caching.  

Looking at CPU usage for the same two data sets demonstrates 
differences in application behavior.  First, the system CPU 
dominated the total time by ~ 4:1 for total CPU time per 
transaction.  This is not surprising given that the majority of this 
activity is driven by read() and write() calls as well as polling 
during periods of inactivity. 

Figure 7 shows the relationship between execution time and CPU 
time for both sets of test runs.  One thing to notice is the slope of 
the linear regression curve. Total CPU usage decreases since the 
faster you move a constant set of data, the harder the data must be  
pushed during the (shorter) time window.  The product of the two 
terms as a histogram we see a very tight set of values (s2), 
implying this relationship. 

The final metric is memory use, which ends up being quite 
consistent both in terms of native and iSSHD when looking at 
results from the data generation scripts.  Within SSHD, there are a 
limited number of ways that memory becomes allocated once a 
session completes initialization – the most common being internal 
data buffering and channel creation.  In both of these cases the 

size growth is minimal for the modifications made since data 
buffering from interactive sessions are cleared once they are 
written to the stunnel socket.   

 

 
Figure 7: Total CPU time vs. length of transaction time for test 
data runs against iSSHD and native SSHD. 

The overall conclusion is that the changes made to introduce 
instrumentation into iSSHD do not have a significant impact on 
performance or usability. 

5.4 Overall Observations 
Overall the iSSHD project has provided insight into probably 
three-dozen compromised user accounts since 2009.  In each of 
these cases it was possible to not only quickly determine the 
success of the attack, but also get exploit tools and code used.  

 
Figure 8: Distribution of maximum channels/session for November 
2010. 
 

As suggested in the introduction, the iSSHD also provides a 
tremendous source of measurement data as well.  We have not yet 



begun to fully explore this avenue, but there is no technical reason 
why we could not use this to identify needs for the user 
community.  An example of this would be to systematically 
explore port-forwarding behaviors to see if we could deliver 
network services differently.  Besides problem solving, the 
measurement data can also provide an interesting repository of 
pure research data.  Figure 8 provides an example of the 
maximum channel count per session per day during November 
2010).  It is interesting to note that some users are exceeding 50 
channels per session – in this case the majority of this is web 
browsing.  This might be done (for example) to visit social 
networking sites blacklisted by a users local institution.  This has 
interesting security repercussions to be sure. 
 

6. FUTURE WORK 
Since the iSSHD is relatively new, there is a great deal of learning 
going on with regard to what information is useful as well as 
available.  There are several areas that we are actively looking 
into for future releases.  The first is the detection of local terminal 
session hijacking as described in §2 by [17][18].  The second is 
the extraction of keystroke data from the X11 x-terminal data-
stream, which is currently opaque.  There is currently some 
prototype work completed for the session hijacking (detailed 
below), while tapping into the X11 stream represents a possible 
way to look into the protocols being tunneled over the ssh 
channel. 
 

6.1 Local Session Hijacking 
In the available literature and toolkits, there are a number of ways 
that a local attacker can tap into a running session and “reach 
across” the network to access further systems and resources.  In 
particular this can be done to elevate privilege if the user has 
gained root access on the external system, or to hop over one time 
password authentication.  We are familiar with examples of the 
later. 
 
In the SSH-Jack application [17], ptrace is attached to the ssh 
client process, finds the channel setup code, then patches the 
memory to request a remote shell attached to a local TCP socket. 
The user running the ssh client is completely unaware that this is 
happening since they are running under a different set of channels 
in the same user session.  We are hoping to look for an unusual 
ssh_session2_open() call and match it to the expected state for a 
normal session to help identify this attack.  Regardless of this, the 
entire communications from the new channel will be logged and 
analyzed in the same way that normal user activity is. 
 
A more common attack involves a local root user looking to jump 
off the compromised host through some sort of multi-factor 
authentication.  In many cases this involves the opening of the 
victim users terminal descriptors for standard in, out and error 
then writing data directly into the sockets.  The running ssh is not 
even aware that anything is amiss since it is just transiting data 
normally.  We are looking to use the Linux inotify interface [2] to 
monitor and log additional file open events on the terminals file 
descriptors.  This is still in its prototype phase. 
 

7. CONCLUSION 
We have presented an instrumented version of the OpenSSH 
application that allows for a local site to log and analyze user 

activities on local HPC resources.  This analysis can be used to 
enforce local security policy with respect to SSH usage, which 
would otherwise be difficult or impossible with normal tools. 
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Appendix 1 
This is an abbreviated list of iSSHD events current as of January 
2011.  The event name is in the left column and a summary of 
returned data types is on the right.  All events are processed in the 
current public release of the policy set.  The description in the 
Returned Data column does not include all the default fields 
described in §4.3. 
 

Authentication 
Events 

Returned Data 

auth_info userid, auth type, success, 
source IP, dest IP 

auth_invalid_user userid 
auth_key_fingerprint fingerprint of pub key 
auth_pass_attempt userid, password 
 

Channel Events Returned Data 

channel_data_client URI encoded client data 
channel_data_server URI encoded server response 
channel_data_server_sum Data skipped by heuristics 
channel_free id of closed channel 
channel_new id, type, remote name 
channel_notty_analysis_disable printable/non-printable ratio for 

non-tty channel exceeds set 
ratio 

channel_notty_client_data URI encoded non-tty client 
data 

channel_notty_server_data URI encoded non-tty server 
data 

channel_pass_skip id of channel where pass skip 
happened 

channel_port_open type, listening port, 
path/hostname, remote ip, 
remote port 

channel_portfwd_req hostname, listening port 

type, listening port, 
path/hostname, remote ip, 
remote port 

channel_post_fwd_listener listen port, path/hostname, host 
port, type 

channel_set_fwd_listener type, wildcard bind, host, port 
to connect, listen port 

channel_socks4 id, path/hostname, host port, s4 
command, username 

channel_socks5 id, path/hostname, host port, s5 
command 

 

Session Events Returned Data 

server_input_channel_open 
 

chan_type, channel, window 
size 

session_do_auth session type, state 
session_exit chanid, parent pid, status 
session_in_channel_req chanid, chan type, session id 
session_remote_do_exec parent pid, command 
session_remote_exec_no_pty parent pid, command 
session_remote_exec_pty parent pid, command 
session_request_direct_tcpip orig host, orig port, dest host, 

dest port, session id 
session_tun_init tun type, can id 
session_x11fwd display as string 
 

SSHD Events Returned Data 

sshd_connection_end 
 

remote ip, remore port, local ip, 
local port, client id 

sshd_connection_start remote ip, remote port, local ip, 
local port, parent pid 

sshd_exit local ip, local port 
sshd_restart local ip, local port 
sshd_server_heartbeat select value 
sshd_start local ip, local port 

 
 


